Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.809
Filtrar
1.
Anal Chem ; 96(16): 6493-6500, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38595323

RESUMO

Mitochondria play a crucial role in maintaining cellular homeostasis, and the depolarization of mitochondrial membrane potential (MMP) is an important signal of apoptosis. Additionally, protein misfolding and aggregation are closely related to diseases including neurodegenerative diseases, diabetes, and cancers. However, the interaction between MMP changes and disease-related protein aggregation was rarely studied. Herein, we report a novel "turn-on" fluorescent probe MitoRhB that specifically targets to mitochondria for Cu2+ detection in situ. The fluorescence lifetime (τ) of MitoRhB exhibits a positive correlation with MMP changes, allowing us to quantitatively determine the relative MMP during SOD1 (A4 V) protein aggregation. Finally, we found that (1) the increasing concentrations of copper will accelerate the depolarization of mitochondria and reduce MMP; (2) the depolarization of mitochondria can intensify the degree of protein aggregation, suggesting a new routine of copper-induced cell death mediated through abnormal MMP depolarization and protein aggregation.


Assuntos
Cobre , Corantes Fluorescentes , Potencial da Membrana Mitocondrial , Agregados Proteicos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Cobre/química , Cobre/metabolismo , Humanos , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Mitocôndrias/química , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/química , Células HeLa
2.
J Phys Chem B ; 128(16): 3910-3918, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607690

RESUMO

Viscosity, at the subcellular level, plays a crucial role as a physicochemical factor affecting microenvironment homeostasis. Abnormal changes in mitochondrial viscosity often lead to various diseases in the organism. Based on the twisted intramolecular charge transfer mechanism, four hemicyanine dye fluorescent probes (HT-SA, HT-SA-S, HT-Bzh, and HT-NA) were designed and synthesized for viscosity response. The single bond between the nitrogen-containing heterocycle and the carbon-carbon double in the structure of the probe bond served as the viscosity response site. Finally, the probe HT-Bzh was screened as the optimal mitochondrial viscosity probe according to its responsiveness, targeting, and interference resistance. The fluorescence intensity of the probe HT-Bzh increased 22-fold when the viscosity was increased from 13.75 to 811.2 cP. In summary, all four viscosity probes we have developed can be used in different applications depending on the external environment, providing a valuable reference for the design of potential tools to address viscosity monitoring in biological systems.


Assuntos
Carbocianinas , Corantes Fluorescentes , Mitocôndrias , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Viscosidade , Carbocianinas/química , Mitocôndrias/metabolismo , Mitocôndrias/química , Humanos , Células HeLa , Estrutura Molecular , Imagem Óptica
3.
Environ Sci Technol ; 58(13): 5716-5726, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38503264

RESUMO

Mitochondria play a key role in the energy production of cells, but their function can be disturbed by environmental toxicants. We developed a cell-based mitochondrial toxicity assay for environmental chemicals and their mixtures extracted from water samples. The reporter gene cell line AREc32, which is frequently used to quantify the cytotoxicity and oxidative stress response of water samples, was multiplexed with an endpoint of mitochondrial toxicity. The disruption of the mitochondrial membrane potential (MMP) was quantified by high-content imaging and compared to measured cytotoxicity, predicted baseline toxicity, and activation of the oxidative stress response. Mitochondrial complex I inhibitors showed highly specific effects on the MMP, with minor effects on cell viability. Uncouplers showed a wide distribution of specificity on the MMP, often accompanied by specific cytotoxicity (enhanced over baseline toxicity). Mitochondrial toxicity and the oxidative stress response were not directly associated. The multiplexed assay was applied to water samples ranging from wastewater treatment plant (WWTP) influent and effluent and surface water to drinking and bottled water from various European countries. Specific effects on MMP were observed for the WWTP influent and effluent. This new MitoOxTox assay is an important complement for existing in vitro test batteries for water quality testing and has potential for applications in human biomonitoring.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Humanos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Mitocôndrias/química , Estresse Oxidativo , Bioensaio/métodos
4.
ACS Sens ; 9(2): 995-1003, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334979

RESUMO

For Raman hyperspectral detection and imaging in live cells, it is very desirable to create novel probes with strong and unique Raman vibrations in the biological silent region (1800-2800 cm-1). The use of molecular probes in Raman imaging is a relatively new technique in subcellular research; however, it is developing very rapidly. Compared with the label-free method, it allows for a more sensitive and selective visualization of organelles within a single cell. Biological systems are incredibly complex and heterogeneous. Directly visualizing biological structures and activities at the cellular and subcellular levels remains by far one of the most intuitive and powerful ways to study biological problems. Each organelle plays a specific and essential role in cellular processes, but importantly for cells to survive, mitochondrial function must be reliable. Motivated by earlier attempts and successes of biorthogonal chemical imaging, we develop a tool supporting Raman imaging of cells to track biochemical changes associated with mitochondrial function at the cellular level in an in vitro model. In this work, we present a newly synthesized highly sensitive RAR-BR Raman probe for the selective imaging of mitochondria in live endothelial cells.


Assuntos
Células Endoteliais , Mitocôndrias , Humanos , Mitocôndrias/química , Organelas , Sondas Moleculares , Diagnóstico por Imagem
5.
Nature ; 626(7997): 169-176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267577

RESUMO

To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites3,4. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle5,6. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation7,8, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Membranas Mitocondriais , Movimento , Proteínas de Transporte Vesicular , Humanos , Esclerose Amiotrófica Lateral/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Transdução de Sinais , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/ultraestrutura , Microscopia Eletrônica , Imageamento Tridimensional , Sítios de Ligação , Difusão , Fatores de Tempo , Mutação , Homeostase
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123763, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198994

RESUMO

In this work, we reported a fluorescent probe Fur-SH, a derivative of benzofuranone, which was used to detect H2S in living cells and zebrafish. Based on the three structural characteristics of the probe, the effects of different structural modifications on the optical properties of the fluorophore were compared. Then, the fluorophore Fur-OH was synthesized by modifying diethylamino group with benzofuranone as the main skeleton. With 2,4-dinitrofluorobenzene as the recognition group and diethylamino as the electron donor, the push-pull electron effect occurred with nitro group, which led to fluorescence quenching, and an openable fluorescent probe Fur-SH was formed. The probe Fur-SH (λex = 510 nm; λem = 570 nm) had the advantages of smaller full width at half maxima, rapid response (5 min) and wide pH window. The quantitative properties of the probe were excellent, reaching saturation at 50 equivalents of substrate. The probe Fur-SH showed high sensitivity to H2S, with LOD of 48.9 nM and LOQ of 50 nM. At present, the probe Fur-SH had been applied to fluorescence imaging of MCF-7 cells and zebrafish. By comparing the effects of different structures on the optical properties of fluorophores, this work was expected to be helpful to the development of fluorescent probes in the future.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Animais , Corantes Fluorescentes/química , Peixe-Zebra , Sulfeto de Hidrogênio/análise , Mitocôndrias/química , Imagem Óptica , Células HeLa
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123714, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061106

RESUMO

YH-2 represents an innovative, non-invasive fluorescent probe featuring a structure based on flavonoid onium salts. It is characterized by a well-suited Stokes shift and emits in the near-infrared (NIR) wavelength range. Its capacity to distinguish between HeLa cells, HepG2 cells, and LO2 cells is attributed to differential intracellular viscosity. Experimental results validate the heightened viscosity of organelles, such as the endoplasmic reticulum (ER), mitochondria and lysosomes in tumor cells compared to LO2 cells. Of paramount importance, YH-2 demonstrates the capability to swiftly image tumors within a mere 20 min following tail vein injection and this imaging ability can be sustained for an extended period of up to 5 h. This method offers a potential tumor diagnostic strategy in vivo.


Assuntos
Corantes Fluorescentes , Lisossomos , Humanos , Células HeLa , Corantes Fluorescentes/química , Mitocôndrias/química , Retículo Endoplasmático , Cloreto de Sódio , Imagem Óptica/métodos , Viscosidade
8.
Food Chem ; 439: 138151, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064833

RESUMO

Sulfur dioxide (SO2) is emerging as a double-edged molecule, while plays vital roles in food and biological system. However, the fast, highly sensitive, and versatile fluorescent probe still remains a tough challenge among current reports. Herein, we developed a novel aggregation-induced emission (AIE) fluorescent probe TPE-PN for specifically sensing SO2 derivatives with high sensitivity (150 nmol/L) and rapid response time (10 s) based on intramolecular charge transfer (ICT) mechanism. And the fluorescence at 575 nm decreased tremendously with 31-fold after the probe was treated with HSO3-. Employing the probe, the accurate analysis of HSO3- was successfully realized in food samples, cells, plant tissues, and zebrafishes. Furthermore, we successfully demonstrate the eruption of SO2 derivatives within plant during drought and salt stress processes. Therefore, probe TPE-PN illustrates significant potential for applications in food analysis and monitoring of SO2 derivatives levels in biological systems under stress conditions.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Humanos , Fluorescência , Mitocôndrias/química , Dióxido de Enxofre/análise , Células HeLa
9.
Biosens Bioelectron ; 241: 115721, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788579

RESUMO

Herein, the Near-infrared imaging of hepatocellular carcinoma (HCC) and its medicinal treatment was achieved with a γ-glutamyl transpeptidase (GGT)-monitoring fluorescence probe KYZ-GGT which consisted of the typical recognition group γ-glutamyl and the structurally modified signal reporting group hemicyanine-thioxanthene. Compared with the recently reported probes, KYZ-GGT suggested practical and steady capability for monitoring the GGT level in the cellular, xenograft, induced as well as medicinal treatment HCC models. It realized the mitochondrial targeting intracellular imaging to reflect the GGT dynamics in the induction or medicinal treatment of HCC. In the xenograft and induced model mice with multiple factors, KYZ-GGT showed stable performance for visualizing the HCC status. In the medicinal treatment of the long-period-induced HCC model mice verified by the serum indexes and histopathological analysis, KYZ-GGT successfully imaged the medicinal treatment process of HCC with two marketed drugs (Sorafenib and Lenvatinib) respectively, with an applicative penetration depth. The information here was meaningful for investigating effective medicinal strategies for overcoming HCC.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , gama-Glutamiltransferase/análise , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias/química
10.
Sci Rep ; 13(1): 18330, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884543

RESUMO

Hepatitis C virus (HCV) infection can regulate the number and dynamics of mitochondria, and is associated with a prominent hepatic mitochondrial injury. Mitochondrial distress conveys oxidative damage which is implicated in liver disease progression. The present study was conducted to assess the change of mitochondrial DNA (mtDNA) copy number in patients with HCV-related chronic liver disease and the impact of direct-acting antiviral (DAA) therapy. Whole blood mtDNA copy number was measured using real-time quantitative polymerase chain reaction at baseline and 12 weeks after the end of therapy in 50 treatment-naïve HCV-infected patients who achieved sustained viral response (SVR) after DAA therapy and 20 healthy controls. Whole blood mtDNA copy number appeared significantly lower in HCV-infected patients before therapy compared to healthy subjects (P < 0.001). Post-treatment, there was significant increase of mtDNA copy number in HCV-infected patients at SVR12 compared to the pre-treatment values (P < 0.001), meanwhile it didn't differ significantly between HCV-infected patients after therapy and healthy subjects (P = 0.059). Whole blood mtDNA copy number correlated inversely to the serum bilirubin in HCV-infected patients (P = 0.013), however it didn't correlate significantly to the serum aminotransferases, viral load or fibrosis-4 score (P > 0.05). In conclusion, chronic HCV infection has been associated with a prominent mitochondrial injury which could mediate a progressive liver disease. The improved mtDNA content after DAA therapy highlights a possible potential of these drugs to alleviate mitochondrial damage in HCV-related liver disease.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Antivirais/uso terapêutico , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/genética , Hepatite C Crônica/complicações , DNA Mitocondrial/genética , DNA Mitocondrial/análise , Variações do Número de Cópias de DNA , Hepatite C/tratamento farmacológico , Mitocôndrias/genética , Mitocôndrias/química
11.
Toxicology ; 499: 153656, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37879514

RESUMO

Mitochondria's role as a central hub in cellular metabolism and signaling cascades is well established in the scientific community, being a classic marker of organisms' response to toxicant exposure. Nonetheless, little is known concerning the effects of emerging contaminants, such as microplastics, on mitochondrial metabolism. Micro- and nanoplastics present one of the major problems faced by modern societies. What was once an environmental problem is now recognized as an one-health issue, but little is known concerning microplastic impact on human health. Indeed, only recently, human exposure to microplastics was acknowledged by the World Health Organization, resulting in a growing interest in this research topic. Nonetheless, the mechanisms behind micro- and nanoplastics toxicity are yet to be understood. Animal models, nowadays, are the most appropriate approach to uncovering this knowledge gap. In the present review article, we explore investigations from the last two years using rodent models and reach to find the molecular mechanism behind micro- and nanoplastics toxicity and if mitochondria can act as a target. Although no research article has addressed the effects of mitochondria yet, reports have highlighted molecular and biochemical alterations that could be linked to mitochondrial function. Furthermore, certain studies described the effects of disruptions in mitochondrial metabolism, such as oxidative stress. Micro- and nanoplastics may, directly and indirectly, affect this vital organelle. Investigations concerning this topic should be encouraged once they can bring us closer to understanding the mechanisms underlying these particles' harmful effects on human health.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Roedores , Mitocôndrias/química , Substâncias Perigosas , Poluentes Químicos da Água/toxicidade
12.
Nature ; 620(7976): 1101-1108, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612504

RESUMO

Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions.


Assuntos
GTP Fosfo-Hidrolases , Fusão de Membrana , Mitocôndrias , Membranas Mitocondriais , Humanos , Biocatálise , Cardiolipinas/química , Cardiolipinas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Mutação , Domínios Proteicos , Multimerização Proteica , Dinâmica Mitocondrial
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123201, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541090

RESUMO

Fluorescence microscopy has proven to be a crucial powerful tool to specifically visualize cellular organelles. In-depth visualization of the structure of mitochondria in living cells is of great value to better understand their function. Herein, based on our experience in construction of fluorescent difluoroboronate anchored acylhydrazones (BOAHY) chromophores, we rationally designed a novel monoboron complex with a connected triphenylphosphonium moiety, and evaluated its spectroscopic properties, cytotoxicity and intracellular localization. Owing to the positive charge on our fluorescent dye, the molecule had an excellent mitochondria-targeting ability (Pearson's correlation is 0.86).To the best of our knowledge, this is the first example of a BOAHY dye which has been applied as an efficient tracker to target mitochondria in living cells.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Mitocôndrias/química , Corantes Fluorescentes/química
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159366, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37473835

RESUMO

The endoplasmic reticulum (ER) plays a key role in the regulation of protein folding, lipid synthesis, calcium homeostasis, and serves as a primary site of sphingolipid biosynthesis. ER stress (ER dysfunction) participates in the development of mitochondrial dysfunction during aging. Mitochondria are in close contact with the ER through shared mitochondria associated membranes (MAM). Alteration of sphingolipids contributes to mitochondria-driven cell injury. Cardiolipin is a phospholipid that is critical to maintain enzyme activity in the electron transport chain. The aim of the current study was to characterize the changes in sphingolipids and cardiolipin in ER, MAM, and mitochondria during the progression of aging in young (3 mo.), middle (18 mo.), and aged (24 mo.) C57Bl/6 mouse hearts. ER stress increased in hearts from 18 mo. mice and mice exhibited mitochondrial dysfunction by 24 mo. Hearts were pooled to isolate ER, MAM, and subsarcolemmal mitochondria (SSM). LC-MS/MS quantification of lipid content showed that aging increased ceramide content in ER and MAM. In addition, the contents of sphingomyelin and monohexosylceramides are also increased in the ER from aged mice. Aging increased the total cardiolipin content in the ER. Aging did not alter the total cardiolipin content in mitochondria or MAM yet altered the composition of cardiolipin with aging in line with increased oxidative stress compared to young mice. These results indicate that alteration of sphingolipids can contribute to the ER stress and mitochondrial dysfunction that occurs during aging.


Assuntos
Envelhecimento , Estresse do Retículo Endoplasmático , Mitocôndrias , Esfingolipídeos , Animais , Camundongos , Envelhecimento/patologia , Mitocôndrias/química , Mitocôndrias/patologia , Cardiolipinas/análise , Ceramidas/análise , Retículo Endoplasmático/química , Esfingolipídeos/análise , Esfingolipídeos/metabolismo
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122957, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295383

RESUMO

A novel fluorescent probe, with advanced features including "turn-on" fluorescence response, high sensitivity, good compatibility, and mitochondria-targeting function, has been synthesized based on structural design for detecting and visualizing cyanide in foods and biological systems. An electron-donating triphenylamine group (TPA) was employed as the fluorescent and an electron-accepting 4-methyl-N-methyl-pyridinium iodide (Py) moiety was used as a mitochondria-targeted localization unit, which formed intramolecular charge transfer (ICT) system. The "turn-on" fluorescence response of the probe (TPA-BTD-Py, TBP) toward cyanide is attributed two reasons, one is the insertion of an electron-deficient benzothiadiazole (BTD) group into the conjugated system between TPA and Py, and the other is the inhibition of ICT induced by the nucleophilic addition of CN-. Two active sites for reacting with CN- were involved in TBP molecule and high response sensitivity were observed in tetrahydrofuran solvent containing 3 % H2O. The response time could be reduced to 150 s, the linear range was 0.25-50 µM, and the limit of detection was 0.046 µM for CN- analysis. The TBP probe was successfully applied to the detection of cyanide in food samples prepared in aqueous solution, including the sprouting potato, bitter almond, cassava, and apple seeds. Furthermore, TBP exhibited low cytotoxicity, clear mitochondria-localizing capability in HeLa cells and excellent fluorescence imaging of exogenous and endogenous CN- in living PC12 cells. Moreover, exogenous CN- with intraperitoneal injection in nude mice could be well monitored visually by the "turn-on" fluorescence. Therefore, the strategy based on structural design provided good prospects for optimizing fluorescent probes.


Assuntos
Cianetos , Corantes Fluorescentes , Humanos , Animais , Camundongos , Corantes Fluorescentes/química , Células HeLa , Cianetos/análise , Camundongos Nus , Mitocôndrias/química , Aminas , Espectrometria de Fluorescência
16.
Environ Sci Technol ; 57(24): 8975-8982, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37272882

RESUMO

Cetaceans are at elevated risk of accumulating persistent and lipophilic environmental contaminants due to their longevity and high proportion of body fat. Despite this, there is a paucity of taxa-specific chemical effect data, in part due to the ethical and logistical constraints in working with highly mobile aquatic species. Advances in cetacean cell culture have opened the door to the application of mainstream in vitro toxicological effect assessment approaches. Image-based cell profiling is a high-throughput, microscopy-based system commonly applied in drug development. It permits the analysis of the xenobiotic effect on multiple cell organelles simultaneously, hereby flagging its potential utility in the evaluation of chemical toxicodynamics. Here we exposed immortalized humpback whale skin fibroblasts (HuWaTERT) to six priority environmental contaminants known to accumulate in the Southern Ocean food web, in order to explore their subcellular organelle responses. Results revealed chemical-dependent modulation of mitochondrial texture, with the lowest observed effect concentrations for chlorpyrifos, dieldrin, trifluralin, and p,p'-dichlorodiphenyldichloroethane of 0.3, 4.1, 9.3, and 19.8 nM, respectively. By contrast, no significant changes were observed upon exposure to endosulfan and lindane. This study contributes the first fixed mitochondrial images of HuWaTERT and constitutes novel, taxa-specific chemical effect data in support of evidence-based conservation policy and management.


Assuntos
Jubarte , Hidrocarbonetos Clorados , Praguicidas , Animais , Jubarte/fisiologia , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/metabolismo , Praguicidas/análise , Mitocôndrias/química , Fibroblastos/química , Fibroblastos/metabolismo
17.
Anal Chem ; 95(27): 10155-10162, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37376771

RESUMO

Abnormal changes occurring in the mitochondrial microenvironment are important markers indicating mitochondrial and cell dysfunction. Herein, we designed and synthesized a multifunctional fluorescent probe DPB that responds to polarity, viscosity, and peroxynitrite (ONOO-). DPB is composed of an electron donor (diethylamine group) and electron acceptor (coumarin, pyridine cations, and phenylboronic acid esters), in which the pyridine group with a positive charge is responsible for targeting to mitochondria. D-π-A structure with strong intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) properties give rise to respond to polarity and viscosity. The introduction of cyanogroup and phenylboronic acid esters increases the electrophilicity of the probe, which is prone to oxidation triggered by ONOO-. The integrated architecture satisfies the multiple response requirements. As the polarity increases, the fluorescence intensity of probe DPB at 470 nm is quenched by 97%. At 658 nm, the fluorescence intensity of DPB increases with viscosity and decreases with the concentration of ONOO-. Furthermore, the probe is not only successfully used to monitor mitochondrial polarity, viscosity, and endogenous/exogenous ONOO- level fluctuations but also to distinguish cancer cells from normal cells by multiple parameters. Therefore, as-prepared probe provides a reliable tool for better understanding of the mitochondrial microenvironment and also a potential approach for the diagnosis of disease.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Corantes Fluorescentes/química , Viscosidade , Mitocôndrias/química , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Piridinas/análise , Ácido Peroxinitroso/análise
18.
Angew Chem Int Ed Engl ; 62(34): e202303053, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37334855

RESUMO

The in-depth study of single cells requires the dynamically molecular information in one particular nanometer-sized organelle in a living cell, which is difficult to achieve using current methods. Due to high efficiency of click chemistry, a new nanoelectrode-based pipette architecture with dibenzocyclooctyne at the tip is designed to realize fast conjugation with azide group-containing triphenylphosphine, which targets mitochondrial membranes. The covalent binding of one mitochondrion at the tip of the nanopipette allows a small region of the membrane to be isolated on the Pt surface inside the nanopipette. Therefore, the release of reactive oxygen species (ROS) from the mitochondrion is monitored, which is not interfered by the species present in the cytosol. The dynamic tracking of ROS release from one mitochondrion reveals the distinctive "ROS-induced ROS release" within the mitochondria. Further study of RSL3-induced ferroptosis using nanopipettes provides direct evidence for supporting the noninvolvement of glutathione peroxidase 4 in the mitochondria during RSL3-induced ROS generation, which has not previously been observed at the single-mitochondrion level. Eventually, this established strategy should overcome the existing challenge of the dynamic measurement of one special organelle in the complicated intracellular environment, which opens a new direction for electroanalysis in subcellular analysis.


Assuntos
Mitocôndrias , Sobrevivência Celular , Mitocôndrias/química , Mitocôndrias/metabolismo , Química Click/instrumentação , Química Click/métodos , Espécies Reativas de Oxigênio/metabolismo
19.
Bioorg Chem ; 138: 106656, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329811

RESUMO

SO2 and its derivatives play an important role in the antioxidation and anticorrosion of food and medicine. In biological systems, abnormal levels of SO2 lead to the occurrence of many biological diseases. Hence, the development of suitable tools for monitoring SO2 in mitochondria is beneficial for studying the biological effect of SO2 in subcellular organelles. In this research, DHX-1 and DHX-2 are fluorescent probes designed on the basis of dihydroxanthene skeletons. Importantly, DHX-1 (650 nm) and DHX-2 (748 nm) show near-infrared fluorescence response toward endogenous and exogenous SO2, which showed advantages of great selectivity, good sensitivity and low cytotoxicity, and the detection limit is 5.6 µM and 4.08 µM of SO2, respectively. Moreover, DHX-1 and DHX-2 realized SO2 sensing in HeLa cells and zebrafish. Moreover, cell imaging demonstrated that DHX-2 with a thiazole salt structure possesses good mitochondria-targeting ability. Additionally, DHX-2 was perfectly achieved by in situ imaging of SO2 in mice.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Humanos , Camundongos , Corantes Fluorescentes/química , Células HeLa , Mitocôndrias/química , Dióxido de Enxofre/análise
20.
Anal Bioanal Chem ; 415(20): 4949-4959, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329467

RESUMO

Fluorescent turn-on probes have been extensively used in disease diagnosis and research on pathological disease mechanisms because of their low background interference. Hydrogen peroxide (H2O2) plays a vital role in regulating various cellular functions. In the current study, a fluorescent probe, HCyB, based on hemicyanine and arylboronate structures, was designed to detect H2O2. HCyB reacted with H2O2 and exhibited a good linear relationship for H2O2 concentrations ranging from 15 to 50 µM and good selectivity over other species. The fluorescent detection limit was 76 nM. Moreover, HCyB exhibited less toxicity and mitochondrial-targeting abilities. HCyB was successfully used to monitor exogenous or endogenous H2O2 in mouse macrophage RAW 264.7, human skin fibroblast WS1, breast cancer cell MDA-MB-231, and human leukemia monocytic THP1 cells.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Animais , Camundongos , Humanos , Corantes Fluorescentes/química , Peróxido de Hidrogênio/química , Diagnóstico por Imagem , Mitocôndrias/química , Células HeLa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...